What are Logarithms?? Why do we care? I do!!!

Logarithms are exponents.

Definition:

\[x = b^y \iff y = \log_b x \]

Most problems can be solved using the definition alone.

Example:

\[5^x = 25 \text{ What is } x? \]

\[5^x = 5^2 \]

\[x = 2 \]

What about \(5^x = 24 \)?

Not so easy

We could try to guess. We know \(x \) is less than 2 and greater than 1. \(1 < x < 2 \)

\[x = \log_5 24 = \frac{\log 24}{\log 5} \]

\[x \approx 1.380 \]

\[\frac{1.380}{0.699} = 1.975 \]

Change of Base

\[\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b} \]

\[\log_5 25 = \frac{\log 25}{\log 5} = \frac{\ln 25}{\ln 5} = 2 \]

Base goes in the basement.

Let’s check that…

\[5^{1.975} \approx 24.014 \]

Using more decimal places will give closer answer.

\[5^{1.974636} \approx 24.00000507 \]

Since this log is irrational, we can only approximate.

\[\log_b 1 = 0 \quad \text{since} \quad 1 = b^0 \]

\[\log_b b = 1 \quad \text{since} \quad b = b^1 \]

\[\log_b b^x = x \quad \text{since} \quad b^x = b^x \]

3 Basic Rules:

NOTE: \(\log 25 \neq \ln 25, \frac{\log 25}{\log 5} = \frac{\ln 25}{\ln 5} \) just like \(\frac{1}{2} = \frac{2}{4} \) (equivalent fractions)

Calculators are tricky. Older ones are backwards. Enter 25 then log. Modern ones: enter log 25.